Subscribe for Newsletters and Discounts
Be the first to receive our thoughtfully written
religious articles and product discounts.
Your interests (Optional)
This will help us make recommendations and send discounts and sale information at times.
By registering, you may receive account related information, our email newsletters and product updates, no more than twice a month. Please read our Privacy Policy for details.
.
By subscribing, you will receive our email newsletters and product updates, no more than twice a month. All emails will be sent by Exotic India using the email address info@exoticindia.com.

Please read our Privacy Policy for details.
|6
Your Cart (0)
Share our website with your friends.
Email this page to a friend
Books > History > वैदिक गणित (Vedic Mathematics)
Displaying 248 of 4933         Previous  |  NextSubscribe to our newsletter and discounts
वैदिक गणित (Vedic Mathematics)
वैदिक गणित (Vedic Mathematics)
Description

वैदिक गणित

 

वैदिक गणित पर लिखित इस चमत्कारी एवं क्रांतिकारी ग्रंथ में एक नितान्त नवीन दृष्टिकोण प्रस्तुत किया गया है इसमें संख्याओं एवं राशियों के विषय में जिस सत्य का प्रतिपादन हुआ है वह सभी विज्ञान तथा कला- विषयों में समान रूप से लागू होता है

 

यह ग्रंथ आधुनिक पश्चिमी पद्धति से नितान्त भिन्न पद्धति का अनुसरण करता है, जो इस खोज पर आधारित है कि अन्तःप्रज्ञा से उच्चस्तरीय यथार्थ ज्ञान प्राप्त किया जा सकता है इसमें यह प्रदर्शित किया गया है कि प्राचीन भारतीय पद्धति एवं उसकी गुप्त प्रक्रियाएँ गणित की विभिन्न समस्याओ को हल करने की क्षमता रखती हैं जिस ब्रह्माण्ड में हम रहते हैं उसकी संरचना गणितमूलक है तथा गणितीय माप और संबंधों में व्यक्त नियमों का अनुसरण करती है इस ग्रंथ के चालीस अध्यायों में गणित के सभी विषय-गुणन, भाग, खण्डीकरण,- समीकरण, फलन इत्यादि का समावेश हो गया है तथा उनसे संबंधित सभी प्रश्रों को स्पष्टरूपसे समझाकर अद्यावधि ज्ञात सरलतम प्रक्रिया से हल किया गया है यह जगदगुरू श्री भारतीकृष्णतीर्थ जी महाराज की आठ वर्षों की अविरत साधना का फल है

 

प्रस्तावना

 

गोवर्धनपीठ के .शंकराचार्य जी स्वर्गीय भारती कृष्ण तीर्थ द्वारा लिखितवैदिक गणितएक चिरस्थायी कीर्तिस्तंभ है वेद के गूढ़ रहस्यों की गहरी खोजबीन, विशेषतया उसके गणना संबंधी संक्षिप्त सत्रों तथा व्यावहारिक प्रश्नों पर सहज अनप्रयोग करने के विभिन्न पहलुओं की गहर्री खोजबीन करने में स्वर्गीय .शंकराचार्य ने पैनीँ अंतर्दृष्टि, तथा योगी की उजागर करने वाली अंत:प्रेरणा तथा गणितज्ञ की वैश्लेषिक कुशाग्रता और संश्लेषणात्मक मे धा का अनूठा संयोग दिखलाया है इस धारणा पर दृढ़ विश्चास करने वाले कि वेदों में आध्यात्मिक और सांसारिक दोनो के गहरे ज्ञान का असीमित भंडार है, स्वर्गीय शंकराचार्य के साथ हम उस समाज के लोग हैं, जो कि तेजी से गत हो रहा है और भी यह कि प्रज्ञान का यह भंडार जहां तक कि मूलभूत सच्चाई वाली संपत्ति का संबंध है, आगमन तथा निगमन विधियों वाली साधारण सुव्यवस्थित खोज द्वारा प्राप्त कर, उन ऋषियों द्वारा योगसाधना की उच्च अवस्था में संपूर्ण तथा निष्कलंक दिव्य स्रोत से संबंध स्थापित कर सीधे उपलब्ध किया गया है किर्न्त हम यह स्वीकार करते हैं तथा स्वर्गीय .शंकराचार्य ने भी व्यावहारिक रूप में स्वीकार किया था, कि दृढ़तम विश्वासों को मात्र दुहराने से कोई उनकी अभिशंसा तो क्या प्राप्त करेगा आलोचना को भी नहीं बदल सकता इस ध्येय की पर्ति के लिए तो प्रचलित मान्य विधियों द्वारा इन उपलब्धियों को जांचने तथा परखने को परी प्रक्रिया करनी होगी स्वर्गीय .शंकराचार्य ने वैदिक गणित की तुलनात्मक तथा आलोचनात्मक व्याख्या कर वैदिक ज्ञान के लिए इस विधि की आवश्यकता को बिलकलस्पष्ट कर दिया है अतएव वैदिक रहस्यों मे हमें सदर नीहारिकाओं को आकनेँ वाली कवियों या ऋषियों की दृष्टि से नहीं वरन् भौतिक खगोलविद् की चुस्त, होशियार तथा पैनी दृष्टि से आंकना चाहिए

 

यह कि वेदों में गणित सहित पदार्थ विज्ञानों की मूलभूत अवधारणाओं की दृष्टि से तत्वमीमांसक पृष्ठभूमि समेकित रूप से है, उस विचारक को मान्य होगी जिसने औक दोनों पक्षों का गहराई तथा व्यापक रूप से अध्ययन किया है

 

भौतिकी की तत्वमीमांसा , हमारे ताजे प्रकाशित पर्चे में हमने सृष्टि की उत्पत्ति के रहस्यों पर सपरिचित ब्रह्माण्डोत्पत्ति विषयकस्तोत्र की सामग्री (ऋगु 1-19) द्वारा तत्वमीमांसा कौ पृष्ठभूमि को ध्यान में रखते हुए प्रकाश डालने का प्रयास किया है इसमें प्राचीन ज्ञान तथा आधनिक भौतिकी के मिलन बिन्दुओ तक तार्किक विधि द्वारा पहुंचने का प्रयत्न है तथा दोनों अवधारणाओं के बीच सार्थक समानता की खोज का भी प्रयत्न है तत्वमीमांसा की पृष्ठभूमि में गणित भी सम्मिलित है क्योंकि भौतिकी हमेशा ही दी हुई या विशिष्ट दिक्काल-घटना स्थितियों पर गणित का अनुप्रयोग है उसमें हमने तपसु को मूलभूत सृजनात्मक प्रक्रिया के रूप में जांचा है जिसमेँ कि परब्रह्म अपने को नाप, विभिन्नता, सीमाएं, कार्यरूप रेखाएं तथा संबंधों के क्षेत्र में प्रकट करता है तथा यह उद्भव अथवा अवरोहण एक तर्कसंगत क्रम का अनुसरण करता है जिस पर.शर्तों तथा विनिर्देशों के ढांचें में गणितीय विश्लेषण लाग किया जा सकता है उदाहरणार्थ ब्रह्माण्डोत्पत्ति-स्तोत्र मेंरात्रि सीमा के सिद्धांत का निरूपण करती है.ऋतांच सत्यांचअस्तित्वमान (घटना) (चलन कलन) तथा अस्तित्व सत् (वर्त्तन कलन) का अर्थ प्रकट करते हैं, उस स्थिति में जब कि सीमाएं या प्रतिबन्ध, या परिपाटी बनी नहीं हैं या लाग नहीं होती पहले वाले से हमें ब्रह्माण्ड प्रक्रिया का प्रतिबंधहीन तथा नियंत्रणहीन कैसेयाइस तरहमिलता है तथा बाद वाले से अस्तित्व का क्यायावह वह जो आरम्भ से प्रतिबंधहीन तथा नियन्त्रणहीन है कित प्रकट रूप में इसके विपरीत दिखता है, जैसे कि हमारे तार्किक-गणितीय विवेचन के विश्व में, इन दोनों के बीच, तपस, जो कि तांत्रिक प्रतीकवाद में अर्धमात्रा के अनुरूप है, अपनी आलोचनात्मक विचरण की भमिका में समझौता करता है

 

यह तत्वमीमांसा अवश्यमेव दुरूह है, किन्तु यह भौतिकी तथा गणित दोनों की आरंभिक पृष्ठभूमि है परन्तु व्यावहारिक रूप में हमें अपनी रहस्यमय नीहारिकाओं से वास्तविक समझ बूझ तथा विवेचन की कठोर धरती पर उतरना होगा अर्थात हमें दिक्- काल-घटना स्थितियों के उपयोगी स्तर पर अवलोकन करना होगा तभी हम वास्तविक समस्या का सामना करते हैं और हमें इनका हल बिना भागे या रहस्य बनार! निकालना चाहिए स्वर्गीय शंकराचार्य ने यह दुष्कर कार्य जिस कुशलता से निभाया है, वह उन्हें हमारे आदर का पात्र बना देती है

 

मलभूत आधार वाक्यों से यह निष्कर्ष निकलता है कि हम जिस ब्रह्माण्ड में रहते हैं उसर्की संरचना गणितीय होनी चाहिए तथा इसके परिणाम स्वरूप यदि हमें वांछित परिशुद्धता तक कोई तथ्य जानना है अथवा कोई परिणाम निकालना है तो निश्चित रूपं से गणित के नियमों का पालन करना होगा और यह कोई चाहे तो समझ बूझकर करे. या जाने ही, व्यवस्थापूर्वक करे या अव्यवस्थित ढंग से नीची श्रेणी के कुछ जानवर सहज प्रवृत्ति से ही ऊँचे गणितज्ञ होते है, उदाहरणार्थ कछ प्रवासी पक्षी अपने घरू घोंसलों से हजारों मील दर जाकर भी कछ अवधि पश्चात बिना गलती किए वापिस लौट आते हैं इससे यह निर्ष्कर्ष निकलता हैँ कि अवचेतन में गणितीय प्रतिभा होती है जो कि चमत्कारिक कार्य कर सकती है उदाहरणार्थ श्रीमान मातरलिंक की पुस्तकअज्ञात अन्वेषण के अनुसार किसी संख्या का घनमूल निकालने की 32 पैड़ियों वाली प्रक्रिया एक घोड़ा एक क्षण के भीतर कर सकता था यह तो जाद सा लगता है, किन्तु यह निर्विवाद है कि गणित के करतब जादू से लगने लगते हैं और निस्सदेह आदमी को जादुई प्रतिभा का अपना हिस्सा मिला है और वह अभ्यास तथा अनशासन द्वारा तथा योग इत्यादि सहायक विधियों द्वारा उसे समुन्नत कर सकता है, यह भी निर्विवाद है अब तो उसने स्वत : चालित मस्तिष्क का आविष्कार किया है जो विज्ञानिक विधियों द्वारा जटिल गणना कर सकता है, यह भी जादू सा दिखाता है

 

किन्तु इस जादू के अलावा गणित का तर्क था भी, और है भी आदमी अपनी सहजवृत्ति, मेधा या प्रतिभा द्वारा कार्य करता है किन्तु साधारणतया वह तर्क के अनसार कार्य करता है उसे आरम्भ करने के लिए निश्चित आधार सामग्री या आधार वाक्यों की आवश्यकता होती है, तथा निष्कर्ष तक पहुंचने के लिए लगभग सभी तर्क पैड़ियों की यही उसकी सा धारण निगमन तथा आगमन की प्रक्रियाएं हैं इसमें भी गणित की तरह सूत्र तथा (संबंध दर्शाने वाले) समीकरण प्राप्त करते हैं कछ प्रकरणों में गणित के तर्क तथा जादू घुलमिल जाते हैं_ किन्तु उन्है अलग रखने में ही बुद्धिमत्ता है परिणाम निकालने में जादू का उपयोग किया जा सकता है, किन्तु प्रमाणित करने के लिए तर्क का ही उपयोग करना पड़ता है

 

बाद वाले प्रकरण में भी, तर्क (सत्र तथा समीकरण) सरल तथा परिमार्जित हो सकता है या जटिल तथा उबाऊ; पहले वाला आदर्श है हमारे पास विद्वान गणितज्ञों के उच्च कोटि के कछ उदाहरण हैं जिनकी विश्लेषण तथा हल की विधियों को गठन, अकाट्यता तथा परिमार्जन का चमत्कार माना जाता है

 

स्वर्गीय शंकराचार्य ने दावा किया है, और ठीक ही, कि वैदिक सूत्र तथा उनके अनुप्रयोग में ऐसे गुण इतनी विशेष मात्रा में हैं कि उन पर किसी प्रकार का संदेह नहीं कियौ जा सकता इस कृति की विशेषता यह है कि इस कथन को यह वास्तव में प्रमाणित करती है

 

वेदों को सम्पूर्णज्ञान के खजाने के रूप में कोई विश्वास करे या भी करे किन्तु इसमें कोई संदेह नहीं कि वैदिक जाति मात्र पशुपालको की अर्ध अथवा अपर्ण संस्कृति तथा सभ्यता वाली जाति नहीं थी वैदिक ऋषि कोरे काल्पनिक संसार मै नहीं रहते थे उन्होंने अपने आपको व्यावहारिक तथा सैद्धान्तिक ज्ञान की सभी .शाखाओं में, सभी स्तर पर प्रवीण सिद्ध किया उदाहरणार्थ उनके पास दोनों, -शुद्ध तथा प्रयुक्त पदार्थमूलक विज्ञान की विभिन्न .शाखाओं में यथेष्ट ज्ञान था

 

एक ठोस उदाहरण लें सखे के समय हमें, मान लें कि, कृत्रिम उपायों द्वारा वर्षा पैदा करनी है आधुनिक वैज्ञानिक के पास इसके लिए आधुनिक सिद्धांत तथा तकनीक हैं। पुरातन ऋषि केँ पास भी ये दोनों थे, किन्तु आधुनिक सेँ भिन्न अवश्य थे उसके विज्ञान में यज्ञ थे जिसमें कि मंत्र तंत्र तथा अन्य घटकों को गणितीय निश्चितता तथा परिशुद्धता से सहयोग की आवश्यकता रहती थी इस हेतु उसने वेदों के छह उपांग विकसित किए, जिनमें कि तांत्रिक अथवा इतर गणितीय योग्यता तथा कुशलता का महत्वपूर्ण स्थान था सूत्र, इनकी कार्यविधि, संक्षिप्त तथा पक्के रूप में उल्लिखित करते थे मंत्र की परिशुद्ध ध्वनि, यंत्र (उदाहरणार्थ वेदी बनाने में वृत का वर्ग) का सही रेखांकन, सही समय अथवा तारों का सही संयोग, सही लय आदि सभी में पूर्णता सिद्ध करनी पड़ती थी जिससे अभीष्ट परिणाम सही प्रभाव में तथा परिमाण में प्राप्त हो इसके लिए गणितीय कलन की आवश्यकता थी आधुनिक तकनीकी के पास लघुगणक पटल तथा अन्य सहायक पटल होते हैं: पुरातन याज्ञिक के पास सूत्र थे सत्र कैसे उपलब्ध किए गए? जादू से या तर्क से? या जादू तथा तर्क दोनों से? यह एक महत्वपूर्ण प्रश्न है जिस पर हम यहां विचार नहीं करेंगे स्वर्गीय .शंकराचार्य ने उनमें अकाट्यता, सघनता तथा सरलता का दावा किया है यह तो और भी महत्वपूर्ण बात है और हमारा विचार है कि उन्होंने संतोषजनक प्रमाण दिया है

 

अनक्रमणिका

प्रधान संपादक की प्रस्तावना

v

प्रस्तावना

ix

लेखक का प्राक्कथन

xv

पूर्व-पीठिका

xxix

वैदिक गणित अथवा वेदों से सोलह सरल गणितीय सूत्र

xxxiii

अध्याय

1

एक भव्य दृष्टान्त

1

2

गुणन ( निखिलम् इत्यादि सूत्र द्वारा)

11

3

गुणन (ऊर्ध्वतिर्यक् सूत्र के द्वारा)

31

4

भाग (निखिलम् विधि के द्वारा)

43

5

भाग (परावर्त्य विधि के द्वारा)

51

6

भाग की तर्क विधि ( उर्ध्वतिर्यक सूत्र के अनुसार सीधे तर्क द्वारा)

67

7

गुणनखण्डन (सरल द्विघाती)

73

8

गुणनखण्डन II ( कठिन द्विघाती)

77

9

घन इत्यादि के गुणनखण्डन III (मरन तर्क इत्यादि के द्वारा)

81

10

महत्तम् समापवर्त्तक्

87

11

सरल समीकरण (प्राथमिक सिद्धात)

91

12

सरल समीकरण (शून्यम् सूत्र इत्यादि के द्वारा)

95

13

विलयन प्रकार के सहज मरन समीकरण (परावर्त्य विधि द्वारा)

111

14

जटिल विलयन

121

15

युगपत सरल समीकरण

127

16

विविध (सरल) समीकरण

131

17

द्विघात समीकरण

143

18

घन समीकरण

155

19

चतुर्घात् समीकरण

159

20

बहु युगपत् समीकरण

163

21

युगपत द्विघात समीकरण

167

22

गुणनखण्डन तथा अवकल कलन

171

23

आंशिक भिन्न

175

24

आंशिक भिन्नों द्वारा समाकलन

181

25

वैदिक संख्य कूट

183

26

आवर्त्ती दशमलव

185

27

सीधा भाजन

217

28

सहायक भिन्न

231

29

विभाजनीयता तथा सरल आश्लेषक

245

30

विभाजनीयता तथा जटिल आश्लेषक

257

31

वर्गो का योग और अन्तर

265

32

सरल वर्ग तथा घन निकालना

269

33

वर्गफल (सीधी विधि)

273

34

वर्गमूल

277

35

पूर्णघन के घन मूल (मुख्यतया अवलोकन तथा तर्क से)

283

36

(सामान्य) घनमूल

291

37

पाइथागोरस प्रमेय आदि

309

38

एपोलोनिअस प्रमेय

311

39

वैश्लेषिक शांकव गणित

313

40

विविध सामग्री

319

परिशिष्ट 1 - श्रद्धांजलि

325

परिशिष्ट 2 -मेरे इष्ट गुरुदेव-श्री भारतीकृष्णतीर्थ

327

 

वैदिक गणित (Vedic Mathematics)

Item Code:
NZA253
Cover:
Paperback
Edition:
2011
ISBN:
9788120821743
Language:
Hindi
Size:
8.5 inch x 5.5 inch
Pages:
334
Other Details:
Weight of The Book: 340 gms
Price:
$12.00
Discounted:
$9.60   Shipping Free
You Save:
$2.40 (20%)
Add to Wishlist
Send as e-card
Send as free online greeting card
वैदिक गणित (Vedic Mathematics)

Verify the characters on the left

From:
Edit     
You will be informed as and when your card is viewed. Please note that your card will be active in the system for 30 days.

Viewed 6610 times since 22nd Apr, 2017

वैदिक गणित

 

वैदिक गणित पर लिखित इस चमत्कारी एवं क्रांतिकारी ग्रंथ में एक नितान्त नवीन दृष्टिकोण प्रस्तुत किया गया है इसमें संख्याओं एवं राशियों के विषय में जिस सत्य का प्रतिपादन हुआ है वह सभी विज्ञान तथा कला- विषयों में समान रूप से लागू होता है

 

यह ग्रंथ आधुनिक पश्चिमी पद्धति से नितान्त भिन्न पद्धति का अनुसरण करता है, जो इस खोज पर आधारित है कि अन्तःप्रज्ञा से उच्चस्तरीय यथार्थ ज्ञान प्राप्त किया जा सकता है इसमें यह प्रदर्शित किया गया है कि प्राचीन भारतीय पद्धति एवं उसकी गुप्त प्रक्रियाएँ गणित की विभिन्न समस्याओ को हल करने की क्षमता रखती हैं जिस ब्रह्माण्ड में हम रहते हैं उसकी संरचना गणितमूलक है तथा गणितीय माप और संबंधों में व्यक्त नियमों का अनुसरण करती है इस ग्रंथ के चालीस अध्यायों में गणित के सभी विषय-गुणन, भाग, खण्डीकरण,- समीकरण, फलन इत्यादि का समावेश हो गया है तथा उनसे संबंधित सभी प्रश्रों को स्पष्टरूपसे समझाकर अद्यावधि ज्ञात सरलतम प्रक्रिया से हल किया गया है यह जगदगुरू श्री भारतीकृष्णतीर्थ जी महाराज की आठ वर्षों की अविरत साधना का फल है

 

प्रस्तावना

 

गोवर्धनपीठ के .शंकराचार्य जी स्वर्गीय भारती कृष्ण तीर्थ द्वारा लिखितवैदिक गणितएक चिरस्थायी कीर्तिस्तंभ है वेद के गूढ़ रहस्यों की गहरी खोजबीन, विशेषतया उसके गणना संबंधी संक्षिप्त सत्रों तथा व्यावहारिक प्रश्नों पर सहज अनप्रयोग करने के विभिन्न पहलुओं की गहर्री खोजबीन करने में स्वर्गीय .शंकराचार्य ने पैनीँ अंतर्दृष्टि, तथा योगी की उजागर करने वाली अंत:प्रेरणा तथा गणितज्ञ की वैश्लेषिक कुशाग्रता और संश्लेषणात्मक मे धा का अनूठा संयोग दिखलाया है इस धारणा पर दृढ़ विश्चास करने वाले कि वेदों में आध्यात्मिक और सांसारिक दोनो के गहरे ज्ञान का असीमित भंडार है, स्वर्गीय शंकराचार्य के साथ हम उस समाज के लोग हैं, जो कि तेजी से गत हो रहा है और भी यह कि प्रज्ञान का यह भंडार जहां तक कि मूलभूत सच्चाई वाली संपत्ति का संबंध है, आगमन तथा निगमन विधियों वाली साधारण सुव्यवस्थित खोज द्वारा प्राप्त कर, उन ऋषियों द्वारा योगसाधना की उच्च अवस्था में संपूर्ण तथा निष्कलंक दिव्य स्रोत से संबंध स्थापित कर सीधे उपलब्ध किया गया है किर्न्त हम यह स्वीकार करते हैं तथा स्वर्गीय .शंकराचार्य ने भी व्यावहारिक रूप में स्वीकार किया था, कि दृढ़तम विश्वासों को मात्र दुहराने से कोई उनकी अभिशंसा तो क्या प्राप्त करेगा आलोचना को भी नहीं बदल सकता इस ध्येय की पर्ति के लिए तो प्रचलित मान्य विधियों द्वारा इन उपलब्धियों को जांचने तथा परखने को परी प्रक्रिया करनी होगी स्वर्गीय .शंकराचार्य ने वैदिक गणित की तुलनात्मक तथा आलोचनात्मक व्याख्या कर वैदिक ज्ञान के लिए इस विधि की आवश्यकता को बिलकलस्पष्ट कर दिया है अतएव वैदिक रहस्यों मे हमें सदर नीहारिकाओं को आकनेँ वाली कवियों या ऋषियों की दृष्टि से नहीं वरन् भौतिक खगोलविद् की चुस्त, होशियार तथा पैनी दृष्टि से आंकना चाहिए

 

यह कि वेदों में गणित सहित पदार्थ विज्ञानों की मूलभूत अवधारणाओं की दृष्टि से तत्वमीमांसक पृष्ठभूमि समेकित रूप से है, उस विचारक को मान्य होगी जिसने औक दोनों पक्षों का गहराई तथा व्यापक रूप से अध्ययन किया है

 

भौतिकी की तत्वमीमांसा , हमारे ताजे प्रकाशित पर्चे में हमने सृष्टि की उत्पत्ति के रहस्यों पर सपरिचित ब्रह्माण्डोत्पत्ति विषयकस्तोत्र की सामग्री (ऋगु 1-19) द्वारा तत्वमीमांसा कौ पृष्ठभूमि को ध्यान में रखते हुए प्रकाश डालने का प्रयास किया है इसमें प्राचीन ज्ञान तथा आधनिक भौतिकी के मिलन बिन्दुओ तक तार्किक विधि द्वारा पहुंचने का प्रयत्न है तथा दोनों अवधारणाओं के बीच सार्थक समानता की खोज का भी प्रयत्न है तत्वमीमांसा की पृष्ठभूमि में गणित भी सम्मिलित है क्योंकि भौतिकी हमेशा ही दी हुई या विशिष्ट दिक्काल-घटना स्थितियों पर गणित का अनुप्रयोग है उसमें हमने तपसु को मूलभूत सृजनात्मक प्रक्रिया के रूप में जांचा है जिसमेँ कि परब्रह्म अपने को नाप, विभिन्नता, सीमाएं, कार्यरूप रेखाएं तथा संबंधों के क्षेत्र में प्रकट करता है तथा यह उद्भव अथवा अवरोहण एक तर्कसंगत क्रम का अनुसरण करता है जिस पर.शर्तों तथा विनिर्देशों के ढांचें में गणितीय विश्लेषण लाग किया जा सकता है उदाहरणार्थ ब्रह्माण्डोत्पत्ति-स्तोत्र मेंरात्रि सीमा के सिद्धांत का निरूपण करती है.ऋतांच सत्यांचअस्तित्वमान (घटना) (चलन कलन) तथा अस्तित्व सत् (वर्त्तन कलन) का अर्थ प्रकट करते हैं, उस स्थिति में जब कि सीमाएं या प्रतिबन्ध, या परिपाटी बनी नहीं हैं या लाग नहीं होती पहले वाले से हमें ब्रह्माण्ड प्रक्रिया का प्रतिबंधहीन तथा नियंत्रणहीन कैसेयाइस तरहमिलता है तथा बाद वाले से अस्तित्व का क्यायावह वह जो आरम्भ से प्रतिबंधहीन तथा नियन्त्रणहीन है कित प्रकट रूप में इसके विपरीत दिखता है, जैसे कि हमारे तार्किक-गणितीय विवेचन के विश्व में, इन दोनों के बीच, तपस, जो कि तांत्रिक प्रतीकवाद में अर्धमात्रा के अनुरूप है, अपनी आलोचनात्मक विचरण की भमिका में समझौता करता है

 

यह तत्वमीमांसा अवश्यमेव दुरूह है, किन्तु यह भौतिकी तथा गणित दोनों की आरंभिक पृष्ठभूमि है परन्तु व्यावहारिक रूप में हमें अपनी रहस्यमय नीहारिकाओं से वास्तविक समझ बूझ तथा विवेचन की कठोर धरती पर उतरना होगा अर्थात हमें दिक्- काल-घटना स्थितियों के उपयोगी स्तर पर अवलोकन करना होगा तभी हम वास्तविक समस्या का सामना करते हैं और हमें इनका हल बिना भागे या रहस्य बनार! निकालना चाहिए स्वर्गीय शंकराचार्य ने यह दुष्कर कार्य जिस कुशलता से निभाया है, वह उन्हें हमारे आदर का पात्र बना देती है

 

मलभूत आधार वाक्यों से यह निष्कर्ष निकलता है कि हम जिस ब्रह्माण्ड में रहते हैं उसर्की संरचना गणितीय होनी चाहिए तथा इसके परिणाम स्वरूप यदि हमें वांछित परिशुद्धता तक कोई तथ्य जानना है अथवा कोई परिणाम निकालना है तो निश्चित रूपं से गणित के नियमों का पालन करना होगा और यह कोई चाहे तो समझ बूझकर करे. या जाने ही, व्यवस्थापूर्वक करे या अव्यवस्थित ढंग से नीची श्रेणी के कुछ जानवर सहज प्रवृत्ति से ही ऊँचे गणितज्ञ होते है, उदाहरणार्थ कछ प्रवासी पक्षी अपने घरू घोंसलों से हजारों मील दर जाकर भी कछ अवधि पश्चात बिना गलती किए वापिस लौट आते हैं इससे यह निर्ष्कर्ष निकलता हैँ कि अवचेतन में गणितीय प्रतिभा होती है जो कि चमत्कारिक कार्य कर सकती है उदाहरणार्थ श्रीमान मातरलिंक की पुस्तकअज्ञात अन्वेषण के अनुसार किसी संख्या का घनमूल निकालने की 32 पैड़ियों वाली प्रक्रिया एक घोड़ा एक क्षण के भीतर कर सकता था यह तो जाद सा लगता है, किन्तु यह निर्विवाद है कि गणित के करतब जादू से लगने लगते हैं और निस्सदेह आदमी को जादुई प्रतिभा का अपना हिस्सा मिला है और वह अभ्यास तथा अनशासन द्वारा तथा योग इत्यादि सहायक विधियों द्वारा उसे समुन्नत कर सकता है, यह भी निर्विवाद है अब तो उसने स्वत : चालित मस्तिष्क का आविष्कार किया है जो विज्ञानिक विधियों द्वारा जटिल गणना कर सकता है, यह भी जादू सा दिखाता है

 

किन्तु इस जादू के अलावा गणित का तर्क था भी, और है भी आदमी अपनी सहजवृत्ति, मेधा या प्रतिभा द्वारा कार्य करता है किन्तु साधारणतया वह तर्क के अनसार कार्य करता है उसे आरम्भ करने के लिए निश्चित आधार सामग्री या आधार वाक्यों की आवश्यकता होती है, तथा निष्कर्ष तक पहुंचने के लिए लगभग सभी तर्क पैड़ियों की यही उसकी सा धारण निगमन तथा आगमन की प्रक्रियाएं हैं इसमें भी गणित की तरह सूत्र तथा (संबंध दर्शाने वाले) समीकरण प्राप्त करते हैं कछ प्रकरणों में गणित के तर्क तथा जादू घुलमिल जाते हैं_ किन्तु उन्है अलग रखने में ही बुद्धिमत्ता है परिणाम निकालने में जादू का उपयोग किया जा सकता है, किन्तु प्रमाणित करने के लिए तर्क का ही उपयोग करना पड़ता है

 

बाद वाले प्रकरण में भी, तर्क (सत्र तथा समीकरण) सरल तथा परिमार्जित हो सकता है या जटिल तथा उबाऊ; पहले वाला आदर्श है हमारे पास विद्वान गणितज्ञों के उच्च कोटि के कछ उदाहरण हैं जिनकी विश्लेषण तथा हल की विधियों को गठन, अकाट्यता तथा परिमार्जन का चमत्कार माना जाता है

 

स्वर्गीय शंकराचार्य ने दावा किया है, और ठीक ही, कि वैदिक सूत्र तथा उनके अनुप्रयोग में ऐसे गुण इतनी विशेष मात्रा में हैं कि उन पर किसी प्रकार का संदेह नहीं कियौ जा सकता इस कृति की विशेषता यह है कि इस कथन को यह वास्तव में प्रमाणित करती है

 

वेदों को सम्पूर्णज्ञान के खजाने के रूप में कोई विश्वास करे या भी करे किन्तु इसमें कोई संदेह नहीं कि वैदिक जाति मात्र पशुपालको की अर्ध अथवा अपर्ण संस्कृति तथा सभ्यता वाली जाति नहीं थी वैदिक ऋषि कोरे काल्पनिक संसार मै नहीं रहते थे उन्होंने अपने आपको व्यावहारिक तथा सैद्धान्तिक ज्ञान की सभी .शाखाओं में, सभी स्तर पर प्रवीण सिद्ध किया उदाहरणार्थ उनके पास दोनों, -शुद्ध तथा प्रयुक्त पदार्थमूलक विज्ञान की विभिन्न .शाखाओं में यथेष्ट ज्ञान था

 

एक ठोस उदाहरण लें सखे के समय हमें, मान लें कि, कृत्रिम उपायों द्वारा वर्षा पैदा करनी है आधुनिक वैज्ञानिक के पास इसके लिए आधुनिक सिद्धांत तथा तकनीक हैं। पुरातन ऋषि केँ पास भी ये दोनों थे, किन्तु आधुनिक सेँ भिन्न अवश्य थे उसके विज्ञान में यज्ञ थे जिसमें कि मंत्र तंत्र तथा अन्य घटकों को गणितीय निश्चितता तथा परिशुद्धता से सहयोग की आवश्यकता रहती थी इस हेतु उसने वेदों के छह उपांग विकसित किए, जिनमें कि तांत्रिक अथवा इतर गणितीय योग्यता तथा कुशलता का महत्वपूर्ण स्थान था सूत्र, इनकी कार्यविधि, संक्षिप्त तथा पक्के रूप में उल्लिखित करते थे मंत्र की परिशुद्ध ध्वनि, यंत्र (उदाहरणार्थ वेदी बनाने में वृत का वर्ग) का सही रेखांकन, सही समय अथवा तारों का सही संयोग, सही लय आदि सभी में पूर्णता सिद्ध करनी पड़ती थी जिससे अभीष्ट परिणाम सही प्रभाव में तथा परिमाण में प्राप्त हो इसके लिए गणितीय कलन की आवश्यकता थी आधुनिक तकनीकी के पास लघुगणक पटल तथा अन्य सहायक पटल होते हैं: पुरातन याज्ञिक के पास सूत्र थे सत्र कैसे उपलब्ध किए गए? जादू से या तर्क से? या जादू तथा तर्क दोनों से? यह एक महत्वपूर्ण प्रश्न है जिस पर हम यहां विचार नहीं करेंगे स्वर्गीय .शंकराचार्य ने उनमें अकाट्यता, सघनता तथा सरलता का दावा किया है यह तो और भी महत्वपूर्ण बात है और हमारा विचार है कि उन्होंने संतोषजनक प्रमाण दिया है

 

अनक्रमणिका

प्रधान संपादक की प्रस्तावना

v

प्रस्तावना

ix

लेखक का प्राक्कथन

xv

पूर्व-पीठिका

xxix

वैदिक गणित अथवा वेदों से सोलह सरल गणितीय सूत्र

xxxiii

अध्याय

1

एक भव्य दृष्टान्त

1

2

गुणन ( निखिलम् इत्यादि सूत्र द्वारा)

11

3

गुणन (ऊर्ध्वतिर्यक् सूत्र के द्वारा)

31

4

भाग (निखिलम् विधि के द्वारा)

43

5

भाग (परावर्त्य विधि के द्वारा)

51

6

भाग की तर्क विधि ( उर्ध्वतिर्यक सूत्र के अनुसार सीधे तर्क द्वारा)

67

7

गुणनखण्डन (सरल द्विघाती)

73

8

गुणनखण्डन II ( कठिन द्विघाती)

77

9

घन इत्यादि के गुणनखण्डन III (मरन तर्क इत्यादि के द्वारा)

81

10

महत्तम् समापवर्त्तक्

87

11

सरल समीकरण (प्राथमिक सिद्धात)

91

12

सरल समीकरण (शून्यम् सूत्र इत्यादि के द्वारा)

95

13

विलयन प्रकार के सहज मरन समीकरण (परावर्त्य विधि द्वारा)

111

14

जटिल विलयन

121

15

युगपत सरल समीकरण

127

16

विविध (सरल) समीकरण

131

17

द्विघात समीकरण

143

18

घन समीकरण

155

19

चतुर्घात् समीकरण

159

20

बहु युगपत् समीकरण

163

21

युगपत द्विघात समीकरण

167

22

गुणनखण्डन तथा अवकल कलन

171

23

आंशिक भिन्न

175

24

आंशिक भिन्नों द्वारा समाकलन

181

25

वैदिक संख्य कूट

183

26

आवर्त्ती दशमलव

185

27

सीधा भाजन

217

28

सहायक भिन्न

231

29

विभाजनीयता तथा सरल आश्लेषक

245

30

विभाजनीयता तथा जटिल आश्लेषक

257

31

वर्गो का योग और अन्तर

265

32

सरल वर्ग तथा घन निकालना

269

33

वर्गफल (सीधी विधि)

273

34

वर्गमूल

277

35

पूर्णघन के घन मूल (मुख्यतया अवलोकन तथा तर्क से)

283

36

(सामान्य) घनमूल

291

37

पाइथागोरस प्रमेय आदि

309

38

एपोलोनिअस प्रमेय

311

39

वैश्लेषिक शांकव गणित

313

40

विविध सामग्री

319

परिशिष्ट 1 - श्रद्धांजलि

325

परिशिष्ट 2 -मेरे इष्ट गुरुदेव-श्री भारतीकृष्णतीर्थ

327

 

Post a Comment
 
Post Review
Post a Query
For privacy concerns, please view our Privacy Policy

Related Items

Ancient Indian Mathematics (With Special Reference to Vedic Mathematics and Astronomy)
Item Code: NAH304
$30.00$24.00
You save: $6.00 (20%)
Add to Cart
Buy Now
The Curious Hats of Magical Maths: Vedic Mathematics for Schools (Set of 2 Volumes)
Item Code: NAK740
$45.00$36.00
You save: $9.00 (20%)
Add to Cart
Buy Now
Vedic Mathematics for Schools (Book 2)
Item Code: NAJ189
$25.00$20.00
You save: $5.00 (20%)
Add to Cart
Buy Now
Vedic Mathematics for Schools (Book 3)
Item Code: NAI122
$25.00$20.00
You save: $5.00 (20%)
Add to Cart
Buy Now
The Essentials of Vedic Mathematics
by Rajesh Kumar Thakur
Paperback (Edition: 2013)
Rupa Publication Pvt. Ltd.
Item Code: NAE944
$22.50$18.00
You save: $4.50 (20%)
Add to Cart
Buy Now
Glimpses of Vedic Mathematics For Quicker Calculations
by Dr. C. Naga Lakshmi
Paperback (Edition: 2009)
I-Serve (Hyderabad)
Item Code: NAD674
$10.00$8.00
You save: $2.00 (20%)
Add to Cart
Buy Now
Vedic Mathemattics
by Nikhilam Etc. Sutra
Paperback (Edition: 2010)
EMESCO
Item Code: NAC948
$17.50$14.00
You save: $3.50 (20%)
Add to Cart
Buy Now
The Curious Hats of Magical Maths (Set of 3 Volumes)
Item Code: NAH057
$50.00$40.00
You save: $10.00 (20%)
Add to Cart
Buy Now
The Curious Hats of Magical Maths (Book- 2)
Item Code: NAE322
$35.00$28.00
You save: $7.00 (20%)
Add to Cart
Buy Now
The Curious Hats of Magical Maths
Item Code: NAG037
$30.00$24.00
You save: $6.00 (20%)
Add to Cart
Buy Now
Ganitaavadhaanam (For Trick of Quick Maths)
Item Code: NAC086
$12.50$10.00
You save: $2.50 (20%)
Add to Cart
Buy Now
The Two Facets of Geometry
Item Code: IHL819
$12.50$10.00
You save: $2.50 (20%)
Add to Cart
Buy Now

Testimonials

To my astonishment and joy, your book arrived (quicker than the speed of light) today with no further adoo concerning customs. I am very pleased and grateful.
Christine, the Netherlands
You have excellent books!!
Jorge, USA.
You have a very interesting collection of books. Great job! And the ordering is easy and the books are not expensive. Great!
Ketil, Norway
I just wanted to thank you for being so helpful and wonderful to work with. My artwork arrived exquisitely framed, and I am anxious to get it up on the walls of my house. I am truly grateful to have discovered your website. All of the items I’ve received have been truly lovely.
Katherine, USA
I have received yesterday a parcel with the ordered books. Thanks for the fast delivery through DHL! I will surely order for other books in the future.
Ravindra, the Netherlands
My order has been delivered today. Thanks for your excellent customer services. I really appreciate that. I hope to see you again. Good luck.
Ankush, Australia
I just love shopping with Exotic India.
Delia, USA.
Fantastic products, fantastic service, something for every budget.
LB, United Kingdom
I love this web site and love coming to see what you have online.
Glenn, Australia
Received package today, thank you! Love how everything was packed, I especially enjoyed the fabric covering! Thank you for all you do!
Frances, Austin, Texas
TRUSTe
Language:
Currency:
All rights reserved. Copyright 2017 © Exotic India